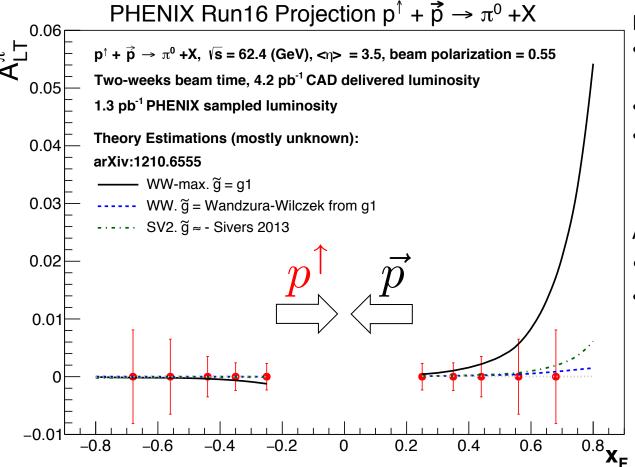
Run2016 p+p 62 GeV Option: Double-Spin Asymmetry A_{LT} in Forward π^0 Production

Xiaodong Jiang (LANL) and Daniel Pitonyak (BNL)

$$p^{\uparrow} + \vec{p} \rightarrow \pi^0 + X$$


At RHIC, the world's only high energy polarized p+p collider, spin-asymmetries were measured on A_N A_{LL} A_{TT} A_L for hadrons, J/ ψ , jet, W[±], etc. But never on A_{LT}

A straight forward measurement:

- RHIC can deliver: independently manipulate spin in each ring.
- PHENIX can measure: with MPC-EX/MPC, A_{LT} same effort as in A_{LL}

Motivation of A_{LT}: adding a new independent spin-observable in p+p to access nucleon's transverse spin structure, clearly answer: **inside a transversely polarized nucleon, could partons response differently to probes carrying opposite helicities?** Either due to parton distributions (Metz, Pitonyak, Schaefer, Zhou, arXiv:1210.6555), or effects from parton fragmentation.

Discovery potential: first establish a non-zero asymmetry A_{IT} in p+p.

Based on ppg135:

- MPC-EX/MPC similar performance as in Run6.
- Beam Polarization=0.55.
- Two-weeks of beam time.
 2*2.1*0.31=1.3 pb⁻¹
 (scaled from Run6)

Asymmetry A_{LT}:

- $cos(\Phi_{spin})$ dependency.
- Flip sign with beam-spin flip.

Many build-in cross-checks.

Discovery potential: First establish a non-vanishing asymmetry A_{LT} in p+p.

Theory estimation (arXiv:1210.6555) considered parton distribution effects only, ignored effects from fragmentation. Also ignored three-parton correlation functions...

 $A_{LT} \sim [\breve{g}(x_1) + off-diagonal 3parton-correlations (x_1)] \odot \Delta g(x_2)$

- Hard scattering factors can be large.
- **No reason for A_{LT} to be zero** Off-diagonal 3-parton correlation functions can be large.
 - Effect from fragmentation can be large, just like in A_N .

arXiv:1210.6555, only considered effects from parton distributions:

$$\frac{P_h^0 d\sigma(\vec{S}_{\perp}, \Lambda)}{d^3 \vec{P}_h} = -\frac{2\alpha_s^2 M}{S} \vec{P}_{h\perp} \cdot \vec{S}_{\perp} \Lambda \sum_i \sum_{a,b,c} \int_{z_{min}}^1 \frac{dz}{z^2} D_1^{C/c}(z) \int_{x'_{min}}^1 \frac{dx'}{x'} \frac{1}{x'S + T/z} \frac{1}{z \, \hat{m}_i} g_1^b(x') \frac{1}{x}$$

$$\times \left\{ \left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{\tilde{g}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + \frac{x}{2} \left(g_{1}^{a}(x) - g_{T}^{a}(x) \right) H_{3,G_{DT}}^{i} + \int dx_{1} \frac{1}{1 - \xi} \left[G_{DT}^{a}(x, x_{1}) + F_{DT}^{a}(x, x_{1}) \right] H_{2,G_{DT}}^{i} \right\}$$

$$\left\{ \left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{\tilde{g}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + \frac{x}{2} \left(g_{1}^{a}(x) - g_{T}^{a}(x) \right) H_{3,G_{DT}}^{i} \right\}$$

$$\left\{ \left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{\tilde{g}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + \frac{x}{2} \left(g_{1}^{a}(x) - g_{T}^{a}(x) \right) H_{3,G_{DT}}^{i} \right\}$$

$$\left\{ \left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{\tilde{g}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + \frac{x}{2} \left(g_{1}^{a}(x) - g_{T}^{a}(x) \right) H_{3,G_{DT}}^{i} \right\}$$

$$\left\{ \left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + \frac{x}{2} \left(g_{1}^{a}(x) - g_{T}^{a}(x) \right) H_{3,G_{DT}}^{i} \right\}$$

$$\left\{ \left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + \frac{x}{2} \left(g_{1}^{a}(x) - g_{T}^{a}(x) \right) H_{3,G_{DT}}^{i} \right\}$$

$$\left\{ \left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + \frac{x}{2} \left(g_{1}^{a}(x) - g_{T}^{a}(x) \right) H_{3,G_{DT}}^{i} \right\}$$

$$\left\{ \left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} \right\}$$

$$\left\{ \left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} \right\}$$

$$\left[\left[\tilde{g}^{a}(x) - x \frac{d\tilde{g}^{a}(x)}{dx} \right] H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} + x g_{T}^{a}(x) H_{1,G_{DT}}^{i} \right] \right\}$$

Estimated

Based on spin structure function $g_1(x)$

Off-diagonal three-parton-correlation functions

Hard scattering factors can be large.

No reason for A_{IT} to be zero •

- Off-diagonal 3-parton correlation functions can be large.
- Effect from fragmentation can be large, just like in A_N .

MOTIVATION

- Numerical results for A_{LT} are based only on (1 part of) the distribution term (without the inclusion of genuine quark-gluon-quark correlators) and include some inputs that are not well-constrained
- One cannot rule out large contributions from fragmentation effects (cf. A_N where now it
 is believed such effects dominate the asymmetry! (Kanazawa, et al. PRD(RC) (2014)))
- A_N , A_{LL} , A_{TT} have all been measured at RHIC -> Why not A_{LT} ? (RHIC is the only facility that can do it!)

WHAT WE LEARN

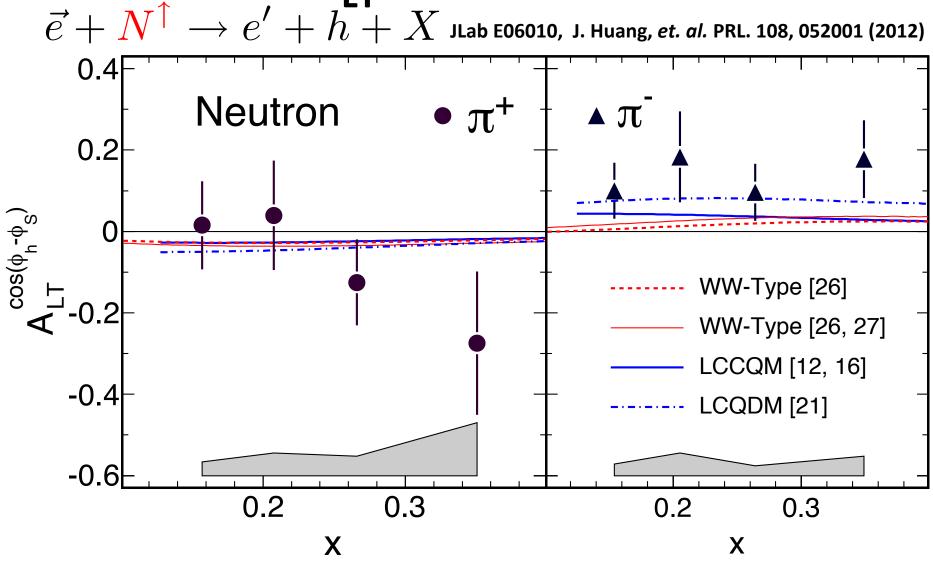
- A nonzero A_{LT} might indicate that fragmentation effects are crucial to understanding twist-3 proton-proton spin asymmetries (like A_N), which is a relatively recent development
- This would push theorists to look into this feature more closely -> for A_{LT} the studies are limited and have not analyzed any fragmentation effects
- A nonzero A_{LT} could also give insight into relatively unknown quark-gluon-quark
 correlations in the proton that are crucial to the evolution of the Qiu-Sterman function

Motivation: inside a transversely polarized nucleon, could partons response differently to probes carrying opposite helicities?

Non-zero A_{LT} in Semi-Inclusive DIS

Huang, et. al. PRL. 108, 052001 (2012)
$$ec{e}+N^{\uparrow}
ightarrow e'+h+X$$

Non-zero A_{IT} in Inclusive Hadron Production with a lepton probe


arXiv:1502.0139

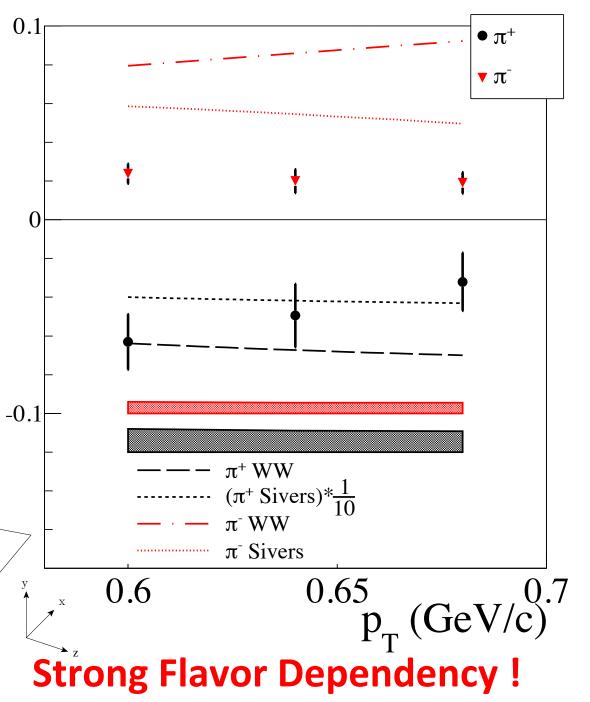
$$\vec{e} + N^{\uparrow} \rightarrow h + X$$

A non-zero A_{IT} in p+p has never been observed. $p^{\uparrow} + \vec{p} \rightarrow \pi^0 + X$

A non-zero A_{IT} will provide strong motivations for fsPHENIX, and shape new physics for EIC

Non-Zero A_{LT} in Semi-Inclusive DIS

 A non-vanishing quark "transversal helicity" distribution, reveals alignment of quark spin transverse to neutron spin direction (HERMES observed a non-zero A_{IT} in SIDIS on a proton target)


Non-Zero A_{LT} in Inclusive **Hadron Production with** a Lepton Probe (Neutron

JLab E06010

Y. Zhao, et al, arXiv:1502.0139

$$\vec{e} + N^{\uparrow} \rightarrow h + X$$

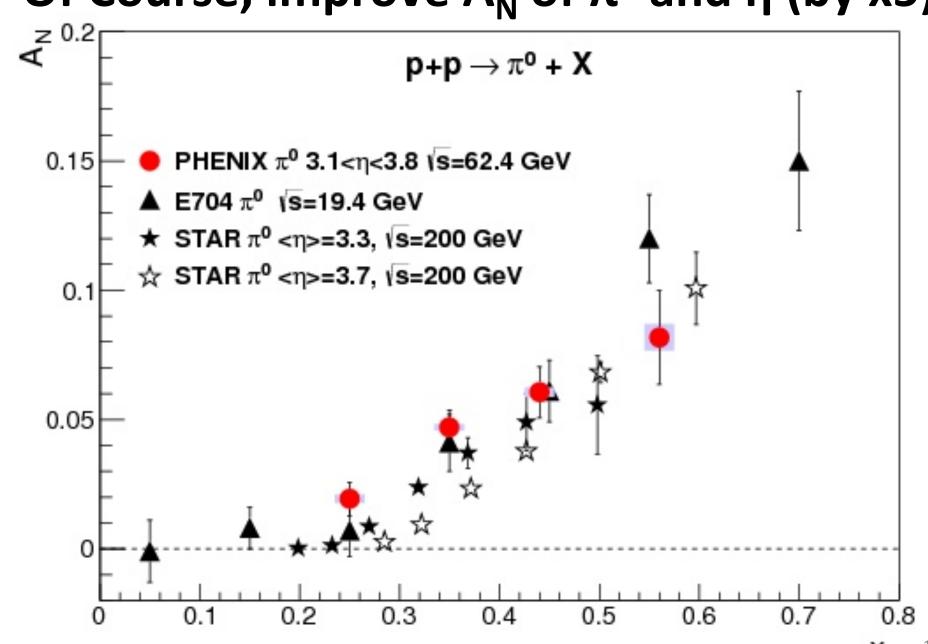
A_{LT}: beam-target double-spin asymmetry

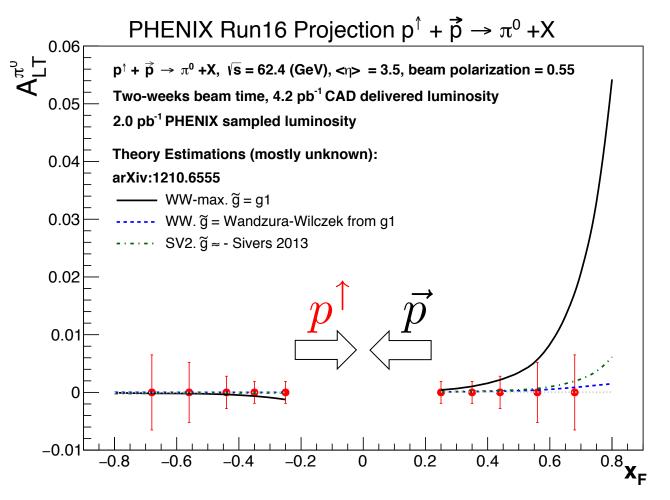
Backup Slides

Questions Raised and Our Answers

Q: We've already measure AN, and cos(\phi_spin) moment was looked, would existing data already tell you that ALT is small?

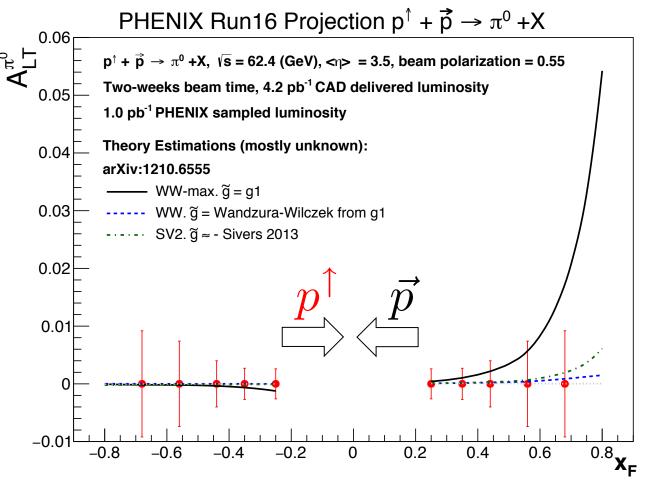
A: No. Single-spin and double-spin asymmetry measurements probe completely different pieces of spin-dependent cross section.


Q: We know ALL is small, almost zero, ALT could only be smaller than ALL, right?


A: No. mechanism of generating asymmetries could be very different, see page-4.

Q: Even theorists could not tell you what goes into this asymmetry ALT, why should we bother to measure it ?

A: That's exactly the reason we earn a living as experimentalists, we discover new phenomena that theorists have not predicted yet.


Of Course, improve A_N of π^0 and η (by x5)

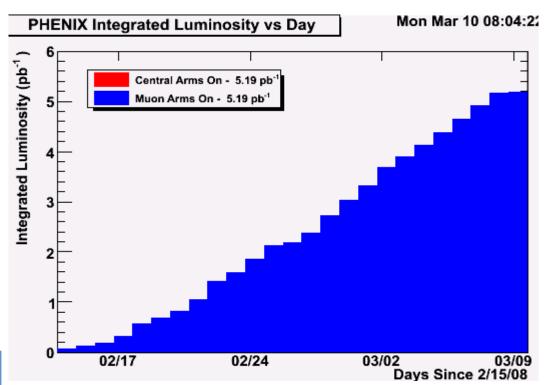
sampled lumi=2.0 pb⁻¹

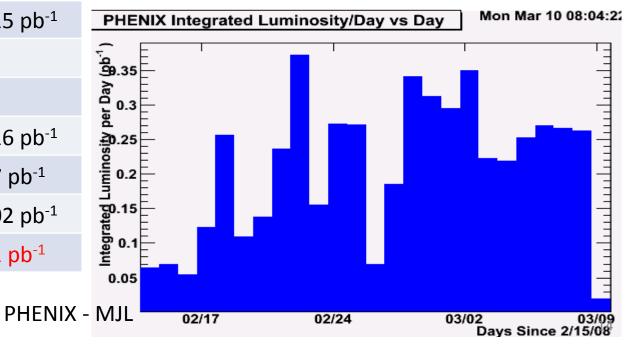
11

sampled lumi=1.0 pb⁻¹

Experiment Goals and delivered/recorded luminosities (~final)

	pp �s energy	Pol	Goal			A	ctual			
Exp			% Pol	Recorded L	Delivered L	Recorded L	Delivered L	\sqcap		
				pb ⁻¹	pb ⁻¹	pb ⁻¹	pb ⁻¹			
PHENIX	200 GeV	R	50%	4-7	10-17	3.1	14.4	H		
	200 GeV	L	60%	10	30	7.5	31.1			
	62.4 GeV	Т	50%			.025	0.16	**		
	62.4 GeV	L	50%	0.6	1.4	.075	0.24	**Run6		
STAR	200 GeV	T	50%	3	15	3.34	18.9	Phenix-recorded/		
	200 GeV	L part 1##				2.1	7.87			
		L part 2				6.39	19.4	CAD-delivered = 0.31		
		L total	50%	10	30	8.49	27.3			
	62.4 GeV	Т	50%	0.5	1.5	.084	0.34	**		
BRAHMS	62.4 GeV	T	50%	0.85	1.4	0.21	0.36	#		


			Actual	FOM Goal		FOM Actual		
Exp	pp ^v s energy	Pol	Average Pol	Recorded L	Delivered L	Recorded L		Delivered L
				pb ⁻¹	pb ⁻¹	pb ⁻¹		pb ⁻¹
PHENIX	200 GeV	R	52.9%	1-1.8	2.5-4.3	0.87	*	4.03
	200 GeV	L	60.5%	1.3	3.9	1.00	*	4.19
	62.4 GeV	Т	49.8%	N/A	N/A	0.0062	*	0.039
	62.4 GeV	L	47.5%	0.04	0.09	0.0038	*	0.012
STAR	200 GeV	Т	57.6%	0.8	3.8	1.11	*	6.25
	200 GeV	L part 1##	51.8%			0.15	*	0.57
		L part 2	61.2%			0.90	*	2.72
		L total	59.0%	0.6	1.9	1.03	*	3.30
	62.4 GeV	Т	48.3%	0.03	0.38	0.020		0.079
BRAHMS	62.4 GeV	T	48.2%	0.21	0.35	0.049	*	0.083
* ppile estimate from PHENIX and STAR input								
** missing	first physics store	e 7998 (estir	nated)					
# assumes	BRAHMS Lumi	1.05 x STA	R for stores thro	ough 12 June				
## taken d	## taken during STAR tune-up phase					_		•


PHENIX's record, Mike Leitch

5.2 pb⁻¹ 200 GeV p+p Transverse Vertical luminosity recorded (1.1 pb⁻¹ FOM)

Peak luminosity per day ~0.37 pb⁻¹

Run	Energy	Long.	Trans.
02	200 GeV		0.15 pb ⁻¹
03	200 GeV	0.35 pb ⁻¹	
04	200 GeV	0.12 pb ⁻¹	
05	200 GeV	3.4 pb ⁻¹	0.16 pb ⁻¹
06	200 GeV	7.5 pb ⁻¹	2.7 pb ⁻¹
06	62.4 GeV	0.08 pb ⁻¹	0.02 pb ⁻¹
08	200 GeV		5.1 pb ⁻¹

3/11/2008

ppg135 sampled luminosity=50 nb⁻¹

Table V: Transverse single spin asymmetries at $\sqrt{s}=62.4$ GeV as a function of x_F

	$ x_F $ p_T $A_N \pm \sigma_{stat} \pm \sigma_{syst}(x_F > 0)$	$A_N \pm \sigma_{stat} \pm \sigma_{syst}(x_F < 0)$
3.1 < η < 3.8	0.25 0.52 0.0193 ±0.0065 ±0.0017	-0.0067 ±0.0065 ±0.0017
3.1 < η < 3.8	0.35 0.71 0.0469 ±0.0067 ±0.0013	-0.0017 ±0.0066 ±0.0013
3.1 < η < 3.8	0.44 0.86 0.0605 ±0.0099 ±0.0019	-0.0182 ±0.0099 ±0.0019
3.1 < η < 3.8	0.56 1.01 0.0817 ±0.0182 ±0.0052	-0.0009 ±0.0181 ±0.0052

AnaNote1112, page-2, on Run6pp62 sampled luminosity:

The additional runs are in italics. There were a total of 663,137,869 "BBCLL1(noVertexCut)" live triggers. Assuming a cross-section of 14.3 ± 2.7 mb for the BBC triggered events, this means the data-set included in this analysis sampled an integrated luminosity of about 50/nb.

For sampled lumi=1.3 pb⁻¹, beam-polarization=0.55, each point on Run6 error bar For A_{LT} reduce by $\sqrt{(1.3/0.050)*0.55=2.8}$ For A_{N} reduce by $\sqrt{(1.3/0.050)=5.1}$